summaryrefslogtreecommitdiffstats
path: root/helpers.py
blob: 57593c28056784cf0fd5454b9b2a406613cdfc9b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
"""
Various Helper Functions.

Copied from Viz2. Fat trimmed.

Volker Hoffmann <volker@cheleb.net>
19 April 2013
"""

from math import pi
# from time import gmtime, strftime
import numpy as np
import os

def prof1d(x, data, xbins):
    """Compute 1D Profile.

    Initially, xbins contains bin edges.
    After binning, we compute bin centres and return those in xbins.
    """

    # Flat Arrays?
    if x.ndim > 1 or data.ndim > 1 or xbins.ndim > 1:
        raise Exception("Non-Flat Input Arrays for Binning. Terminating.")

    # Allocate Memory
    bval = np.zeros(xbins.shape[0])
    bcount = np.zeros_like(bval)

    # Binning
    # print "(%s UTC) Binning 1D Profile.." % strftime("%H:%M:%S", gmtime())
    for idata in range(data.shape[0]):
        for ibin in range(xbins.shape[0] - 1):
            if x[idata] > xbins[ibin] and x[idata] <= xbins[ibin + 1]:
                bval[ibin] += data[idata]
                bcount[ibin] += 1
    # print "(%s UTC) Done Binning." % strftime("%H:%M:%S", gmtime())

    # Drop Last Entry
    bval = bval[:-1]
    bcount = bcount[:-1]

    # Transpose Array
    bval = bval.T
    bcount = bcount.T

    # Normalize
    bcount[bcount == 0] = 1
    bval /= bcount

    return bval

def mkvec(x, y, z):
    """Takes Three Vectors.
    Builds Three Vectors Combining All Possible Combinations.

    Example In:
    - x = [ 0 1 ]
    - y = [ 2 3 ]
    - z = [ 4 5 ]

    Example Out:
    - xx = [ 0 1 0 1 0 1 0 1 ]
    - yy = [ 2 2 3 3 2 2 3 3 ]
    - zz = [ 4 4 4 4 5 5 5 5 ]
    """

    # Length Counters
    xlen = len(x)
    ylen = len(y)
    zlen = len(z)

    xylen = xlen * ylen
    xyzlen = xylen * zlen

    # Allocate Output Arrays
    xx = np.zeros(xyzlen)
    yy = np.zeros_like(xx)
    zz = np.zeros_like(xx)

    # Run Through Arrays
    xcount = 0
    ycount = 0
    zcount = 0
    for ii in range(xyzlen):

        # Assign Values
        xx[ii] = x[xcount]
        yy[ii] = y[ycount]
        zz[ii] = z[zcount]

        # Increment or Reset Counters
        if xcount == xlen - 1:
            xcount = 0
            if ycount == ylen - 1:
                ycount = 0
                zcount += 1
            else:
                ycount += 1
        else:
            xcount += 1

    return xx, yy, zz

def mkpoints_xyz(center=0.5, radius=0.4, thickness=0.2, nx=128, ny=128, nz=64):
    """Generate Sampling Points. Sampling Defined in (x,y,z) Coordinates."""

    # Compute Characters
    cchar = str(center).translate(None, ".")
    rchar = str(radius).translate(None, ".")
    tchar = str(thickness).translate(None, ".")
    nxchar = str(nx)
    nychar = str(ny)
    nzchar = str(nz)

    # Build File Name, File Location
    fname = "points_c%s_r%s_t%s_nx%s_ny%s_nz%s.npz" % \
            ( cchar, rchar, tchar, nxchar, nychar, nzchar )
    floc = "%s/%s" % \
           ( os.path.dirname(os.path.abspath(__file__)), fname )

    # File Exist?
    if os.path.isfile(floc):

        # Load Points
        npz = np.load(floc)
        points_xyz = npz["points_xyz"]
        points_xy  = npz["points_xy"]
        x = npz["x"]
        y = npz["y"]
        z = npz["z"]
        dl = npz["dl"]
        dl = dl[()]     # Recover dict from 0d-array
                        # http://stackoverflow.com/questions/8361561/recover-dict-from-0-d-numpy-array
        npz.close()

    else:

        print ""
        print "*** Generating Sampling Points."
        print ""

        # Generate Points
        x, dx = np.linspace(center - radius, center + radius, nx, retstep=True)
        y, dy = np.linspace(center - radius, center + radius, ny, retstep=True)
        z, dz = np.linspace(center - thickness/2., center + thickness/2., nz, retstep=True)

        # Point Spacing
        dl = {"dx": dx, "dy": dy, "dz": dz}

        # Reshape
        points_xyz = mkpoints_pymses(x, y, z)
        points_xy  = mkpoints_pymses(x, y, np.array([center]))

        # Save
        np.savez(floc, \
                 points_xyz=points_xyz, points_xy=points_xy, \
                 x=x, y=y, z=z, dl=dl)

    return points_xyz, points_xy, x, y, z, dl

def mkpoints_rtz(center=0.5, radius=0.4, thickness=0.2, \
                 nr=128, ntheta=128, nz=64):
    """Generate Sampling Points. Defined in (r,theta,z) Coordinates.
    >>> BEWARE: THE PYMSES SAMPLING MATRIX IS SORTED R,Z,THETA <<<
    """

    # Compute Characters
    cchar = str(center).translate(None, ".")
    rchar = str(radius).translate(None, ".")
    tchar = str(thickness).translate(None, ".")
    nrchar = str(nr)
    nthetachar = str(ntheta)
    nzchar = str(nz)

    # Build File Name, File Location
    fname = "points_c%s_r%s_t%s_nr%s_ntheta%s_nz%s.npz" % \
            ( cchar, rchar, tchar, nrchar, nthetachar, nzchar )
    floc = "%s/%s" % \
           ( os.path.dirname(os.path.abspath(__file__)), fname )

    # File Exist?
    if os.path.isfile(floc):

        # Load Points
        npz = np.load(floc)
        points_rzt = npz["points_rzt"]
        points_rz  = npz["points_rz"]
        points_xyz = npz["points_xyz"]
        r = npz["r"]
        theta = npz["theta"]
        z = npz["z"]
        dl = npz["dl"]
        dl = dl[()]     # Recover dict from 0d-array
                        # http://stackoverflow.com/questions/8361561/recover-dict-from-0-d-numpy-array
        npz.close()

    else:

        print ""
        print "*** Generating Sampling Points."
        print ""

        # Generate Points
        # We generally don't want r=0
        r, dr = np.linspace(radius, 0, nr, retstep=True, endpoint=False)
        r = r[::-1]; dr = -dr
        theta, dtheta = np.linspace(0, 2 * pi, \
                                    ntheta, retstep=True, endpoint=False)
        z, dz = np.linspace(- thickness/2., thickness / 2., \
                            nz, retstep=True)

        # Reshape
        points_rzt = mkpoints_pymses(r, z, theta)
        points_rz  = mkpoints_pymses(r, z, np.array([0.0]))

        # Generate XYZ
        points_xyz = np.zeros_like(points_rzt)
        points_xyz[:,0] = points_rzt[:,0] * np.cos(points_rzt[:,2])
        points_xyz[:,1] = points_rzt[:,0] * np.sin(points_rzt[:,2])
        points_xyz[:,2] = points_rzt[:,1]
        points_xyz += center

        # Point Spacing
        dl = {"dr": dr, "dtheta": dtheta, "dz": dz}

        # Save
        np.savez(floc, \
                 points_rzt = points_rzt, points_rz = points_rz, \
                 points_xyz = points_xyz, \
                 r = r, theta = theta, z = z, dl = dl)

    return points_rzt, points_rz, points_xyz, r, theta, z, dl

def mkpoints_pymses(x, y, z):
    """Generate Points Array for Pymses."""

    zz, yy, xx = mkvec(z, y, x)
    points = np.zeros((xx.shape[0], 3))

    for ii in range(xx.shape[0]):
        points[ii,:] = np.array([xx[ii], yy[ii], zz[ii]])

    return points