1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
|
"""
Make X and Z Cuts:
- Density
- Velocity
- Pressure
- Temperature (Sound Speed)
"""
import matplotlib as mpl
from pymses import RamsesOutput
from pymses.filters import CellsToPoints
from pymses.utils import constants as C
from pymses.analysis.visualization import Camera, ScalarOperator, SliceMap, \
FractionOperator
import matplotlib.pyplot as plt
import numpy as np
import sys
import argparse
"""
Main Routine. Define Cameras. Take Slices. Plot.
"""
def main():
# Parse Arguments
parser = argparse.ArgumentParser()
parser.add_argument("ilo", type=int, help='First Output', default=1)
parser.add_argument("ihi", type=int, help='Last Output', default=1)
parser.add_argument("-d", action="store_true", help='Show Density Cuts')
parser.add_argument("-v", action="store_true", help='Show Velocity Cuts')
parser.add_argument("-p", action="store_true", help='Show Pressure Cuts')
parser.add_argument("-T", action="store_true", help='Show Temperature Cuts')
parser.add_argument("--save", action="store_true", help='Save Figures')
parser.add_argument("--show", action="store_true", help='Show Figures')
parser.add_argument("--px", type=int, \
default=512, choices=[256, 512, 1024, 2048], \
help='Maximum Map Size')
args = parser.parse_args()
# Sanity Check
if not args.save and not args.show:
print "At least one of --save or --show is required."
sys.exit(0)
if args.ilo != args.ihi and args.show:
print "Can only show single output."
sys.exit(0)
# Build Output List
iouts = range(args.ilo, args.ihi + 1)
# Define Cameras
camZ = Camera(center=[0.5, 0.5, 0.5], line_of_sight_axis='z',
region_size=[1., 1.], up_vector='y', map_max_size=args.px, log_sensitive=True)
camX = Camera(center=[0.5, 0.5, 0.5], line_of_sight_axis='x',
region_size=[1., 1.], up_vector='y', map_max_size=args.px, log_sensitive=True)
# Functions to Get Data
func_rho = lambda dset: dset["rho"]
func_vel = lambda dset: np.sqrt(np.sum(dset["vel"]**2, axis=1))
# func_vel = lambda dset: dset["vel"][:,0]
func_pre = lambda dset: dset["P"]
# Operator to Get Data
op_rho = ScalarOperator(func_rho)
op_vel = ScalarOperator(func_vel)
op_pre = ScalarOperator(func_pre)
op_cs2 = FractionOperator(func_pre, func_rho)
# The Master Loop
for iout in iouts:
# Give Feedback
print ""
print "**********************************"
print "// Creating Cuts for Output %05d." % iout
print "**********************************"
print ""
# Link AMR Data
output = RamsesOutput(".", iout)
source = output.amr_source(["rho", "vel", "P"])
# Compute Slice Maps
rhoZ = SliceMap(source, camZ, op_rho, z=0.0)
rhoX = SliceMap(source, camX, op_rho, z=0.0)
velZ = SliceMap(source, camZ, op_vel, z=0.0)
velX = SliceMap(source, camX, op_vel, z=0.0)
preZ = SliceMap(source, camZ, op_pre, z=0.0)
preX = SliceMap(source, camX, op_pre, z=0.0)
cs2Z = SliceMap(source, camZ, op_cs2, z=0.0)
cs2X = SliceMap(source, camX, op_cs2, z=0.0)
# Convert Human Mind Parsable Units Pt 1 - (CGS)
rhoZ *= output.info["unit_density"].express(C.g_cc)
rhoX *= output.info["unit_density"].express(C.g_cc)
velZ *= output.info["unit_velocity"].express(C.cm / C.s)
velX *= output.info["unit_velocity"].express(C.cm / C.s)
preZ *= output.info["unit_pressure"].express(C.barye)
preX *= output.info["unit_pressure"].express(C.barye)
# Convert Human Mind Parsable Units Pt 2 - (km/s)
# Sound Speed
factor = output.info["unit_pressure"].express(C.barye) / \
output.info["unit_density"].express(C.g_cc)
cs2Z *= factor / 100.**2. / 1000.**2.
cs2X *= factor / 100.**2. / 1000.**2.
# Total Flow Speed
velZ *= 1.0 / 100. / 1000.
velX *= 1.0 / 100. / 1000.
# Compute Temperature
gamma = 1.4
TX = (cs2X * 100.**2. * 1000.**2.) * 2. * C.mH.express(C.kg) / \
gamma / C.kB.express(C.cm**2 * C.kg / C.s**2 / C.K)
TZ = (cs2Z * 100.**2. * 1000.**2.) * 2. * C.mH.express(C.kg) / \
gamma / C.kB.express(C.cm**2 * C.kg / C.s**2 / C.K)
# Log10?
rhoZ = np.log10(rhoZ)
rhoX = np.log10(rhoX)
preZ = np.log10(preZ)
preX = np.log10(preX)
# Mark Arrays vs. NaN
rhoZ = np.ma.masked_array(rhoZ, mask=np.isnan(rhoZ))
rhoX = np.ma.masked_array(rhoX, mask=np.isnan(rhoX))
velZ = np.ma.masked_array(velZ, mask=np.isnan(velZ))
velX = np.ma.masked_array(velX, mask=np.isnan(velX))
preZ = np.ma.masked_array(preZ, mask=np.isnan(preZ))
preX = np.ma.masked_array(preX, mask=np.isnan(preX))
# Set Masked Colormap
# cmap = mpl.cm.hot
cmap = mpl.cm.jet
cmap.set_bad([0.5, 0.5, 0.5])
# Colormaps:
# http://matplotlib.org/examples/pylab_examples/show_colormaps.html
# rho_cm = 'hot'
# vel_cm = 'hot'
# pre_cm = 'hot'
rho_cm = cmap
vel_cm = cmap
pre_cm = cmap
tmp_cm = cmap
# Compute Image Extent
ext = output.info["boxlen"] * np.array([-0.5, 0.5, -0.5, 0.5])
# Plot Density
if args.d:
f1 = plt.figure(1)
plt.imshow(rhoZ, cmap=rho_cm, extent=ext, interpolation='none')
plt.colorbar()
plt.grid()
plt.title('Log10 Density Cut [g/cc], t=%.2f' % output.info["time"])
plt.xlabel('X [AU]')
plt.ylabel('Y [AU]')
f2 = plt.figure(2)
plt.imshow(rhoX, cmap=rho_cm, extent=ext, interpolation='none')
plt.colorbar()
plt.grid()
plt.title('Log10 Density Cut [g/cc], t=%.2f' % output.info["time"])
plt.xlabel('Y [AU]')
plt.ylabel('Z [AU]')
# Plot Velocity
if args.v:
f3 = plt.figure(3)
plt.imshow(velZ, cmap=vel_cm, extent=ext)
plt.colorbar()
plt.grid()
plt.title('Total Flow Speed Cut [km/s], t=%.2f' % output.info["time"])
plt.xlabel('X [AU]')
plt.ylabel('Y [AU]')
f4 = plt.figure(4)
plt.imshow(velX, cmap=vel_cm, extent=ext)
plt.colorbar()
plt.grid()
plt.title('Total Flow Speed Cut [km/s], t=%.2f' % output.info["time"])
plt.xlabel('Y [AU]')
plt.ylabel('Z [AU]')
# Plot Pressure
if args.p:
f5 = plt.figure(5)
plt.imshow(preZ, cmap=pre_cm, extent=ext, interpolation='none')
plt.colorbar()
plt.grid()
plt.title('Log10 Pressure Cut [debye], t=%.2f' % output.info["time"])
plt.xlabel('X [AU]')
plt.ylabel('Y [AU]')
f6 = plt.figure(6)
plt.imshow(preX, cmap=pre_cm, extent=ext, interpolation='none')
plt.colorbar()
plt.grid()
plt.title('Log10 Pressure Cut [debye], t=%.2f' % output.info["time"])
plt.xlabel('Y [AU]')
plt.ylabel('Z [AU]')
# Plot Temperature
if args.T:
f7 = plt.figure(7)
plt.imshow(TZ, cmap=tmp_cm, extent=ext, interpolation='none')
plt.colorbar()
plt.grid()
plt.title('Temperature Cut [K], t=%.2f' % output.info["time"])
plt.xlabel('X [AU]')
plt.ylabel('Y [AU]')
f8 = plt.figure(8)
plt.imshow(TX, cmap=tmp_cm, extent=ext, interpolation='none')
plt.colorbar()
plt.grid()
plt.title('Temperature Cut [K], t=%.2f' % output.info["time"])
plt.xlabel('Y [AU]')
plt.ylabel('Z [AU]')
# Save Figures
if args.save:
if args.d:
f1.savefig('cut_dxy_%05d.png' % iout)
f2.savefig('cut_dzy_%05d.png' % iout)
if args.v:
f3.savefig('cut_vxy_%05d.png' % iout)
f4.savefig('cut_vzy_%05d.png' % iout)
if args.p:
f5.savefig('cut_pxy_%05d.png' % iout)
f6.savefig('cut_pzy_%05d.png' % iout)
if args.T:
f7.savefig('cut_Txy_%05d.png' % iout)
f8.savefig('cut_Tzy_%05d.png' % iout)
# Show Figures?
if args.show:
plt.show()
"""
Jump into Main().
"""
if __name__ == "__main__":
main()
|